Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Vet Microbiol ; 293: 110100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718527

RESUMO

Recent epidemiological studies have discovered that a lot of cases of porcine epidemic diarrhea virus (PEDV) infection are frequently accompanied by porcine kobuvirus (PKV) infection, suggesting a potential relationship between the two viruses in the development of diarrhea. To investigate the impact of PKV on PEDV pathogenicity and the number of intestinal lymphocytes, piglets were infected with PKV or PEDV or co-infected with both viruses. Our findings demonstrate that co-infected piglets exhibit more severe symptoms, acute gastroenteritis, and higher PEDV replication compared to those infected with PEDV alone. Notably, PKV alone does not cause significant intestinal damage but enhances PEDV's pathogenicity and alters the number of intestinal lymphocytes. These results underscore the complexity of viral interactions in swine diseases and highlight the need for comprehensive diagnostic and treatment strategies addressing co-infections.


Assuntos
Coinfecção , Infecções por Coronavirus , Intestinos , Kobuvirus , Linfócitos , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Vírus da Diarreia Epidêmica Suína/patogenicidade , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Coinfecção/virologia , Coinfecção/veterinária , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Linfócitos/virologia , Kobuvirus/patogenicidade , Kobuvirus/genética , Intestinos/virologia , Diarreia/virologia , Diarreia/veterinária , Replicação Viral , Gastroenterite/virologia , Gastroenterite/veterinária , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia
2.
Int J Biol Macromol ; 258(Pt 1): 128837, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128800

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that has caused significant economic losses in the livestock industry. Peptide vaccines engineered with the protective epitopes of FMDV have provided a safer alternative for disease prevention than the traditional inactivated vaccines. However, the immunogenicity of the peptide is usually poor and therefore an adjuvant is required. Here, we showed that recombinant T4 phages displaying the B-cell epitope of the FMDV VP1 protein (VP1130-158), without additional adjuvants, induced similar levels of antigen-specific IgG1 but higher levels of IgG2a compared to the peptide vaccine. Incorporation of a CD4+ T cell epitope, either 3A21-35 of FMDV 3A protein or P2830-844 of tetanus toxoid, further enhanced the immunogenicity of VP1-T4 phage nanoparticles. Interestingly, the extrinsic adjuvant cannot enhance the immunogenicity of the nanoparticles, indicating the intrinsic adjuvant activities of T4 phage. Furthermore, the recombinant T4 phage can be produced on a large scale within a short period of time at a relatively low-cost using Escherichia coli, heralding its potential in the development of a safe and effective FMDV vaccine.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Bacteriófago T4 , Febre Aftosa/prevenção & controle , Nanovacinas , Anticorpos Antivirais , Epitopos de Linfócito B , Adjuvantes Imunológicos , Proteínas do Capsídeo
3.
Front Immunol ; 14: 1274027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098490

RESUMO

Background: Emerging infectious diseases pose a significant threat to both human and animal populations. Rapid de novo identification of protective antigens from a clinical isolate and development of an antigen-matched vaccine is a golden strategy to prevent the spread of emerging novel pathogens. Methods: Here, we focused on Actinobacillus pleuropneumoniae, which poses a serious threat to the pig industry, and developed a general workflow by integrating proteosurfaceomics, secretomics, and BacScan technologies for the rapid de novo identification of bacterial protective proteins from a clinical isolate. Results: As a proof of concept, we identified 3 novel protective proteins of A. pleuropneumoniae. Using the protective protein HBS1_14 and toxin proteins, we have developed a promising multivalent subunit vaccine against A. pleuropneumoniae. Discussion: We believe that our strategy can be applied to any bacterial pathogen and has the potential to significantly accelerate the development of antigen-matched vaccines to prevent the spread of an emerging novel bacterial pathogen.


Assuntos
Actinobacillus pleuropneumoniae , Pleuropneumonia , Animais , Humanos , Suínos , Antígenos de Bactérias , Vacinas Bacterianas , Proteínas de Bactérias , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle
4.
Antiviral Res ; 217: 105688, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516153

RESUMO

Vaccines that trigger mucosal immune responses at the entry portals of pathogens are highly desired. Here, we showed that antigen-decorated nanoparticle generated through CRISPR engineering of T4 bacteriophage can serve as a universal platform for the rapid development of mucosal vaccines. Insertion of Flu viral M2e into phage T4 genome through fusion to Soc (Small Outer Capsid protein) generated a recombinant phage, and the Soc-M2e proteins self-assembled onto phage capsids to form 3M2e-T4 nanoparticles during propagation of T4 in E. coli. Intranasal administration of 3M2e-T4 nanoparticles maintains antigen persistence in the lungs, resulting in increased uptake and presentation by antigen-presenting cells. M2e-specific secretory IgA, effector (TEM), central (TCM), and tissue-resident memory CD4+ T cells (TRM) were efficiently induced in the local mucosal sites, which mediated protections against divergent influenza viruses. Our studies demonstrated the mechanisms of immune protection following 3M2e-T4 nanoparticles vaccination and provide a versatile T4 platform that can be customized to rapidly develop mucosal vaccines against future emerging epidemics.


Assuntos
Vacinas contra Influenza , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Camundongos , Vacinas contra Influenza/genética , Bacteriófago T4/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli/genética , Infecções por Orthomyxoviridae/prevenção & controle , Camundongos Endogâmicos BALB C , Proteínas da Matriz Viral
5.
J Virol ; 97(6): e0059923, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37306585

RESUMO

Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. IMPORTANCE Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.


Assuntos
Bacteriófago T4 , Enzimas de Restrição-Modificação do DNA , Escherichia coli , Bacteriófago T4/genética , Sistemas CRISPR-Cas , Escherichia coli/enzimologia , Escherichia coli/virologia , Genoma Viral
6.
ACS Appl Mater Interfaces ; 15(25): 30998-31008, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37327489

RESUMO

Surface-enhanced Raman scattering (SERS) has great potential in the field of rapid detection of pesticide residues in food. In this paper, a fiber optic SERS sensor excited by evanescent waves was proposed for efficient detection of thiram. Silver nanocubes (Ag NCs) were prepared as SERS active substrates, which had much stronger electromagnetic field intensity than nanospheres under laser excitation due to much more "hot spots". By using the method of electrostatic adsorption and laser induction, Ag NCs were uniformly assembled at the fiber taper waist (FTW) for enhancing the Raman signal. Different from the traditional way of stimulation, evanescent wave excitation greatly increased the interaction area between the excitation and analyte, while reducing the damage of the excited light to the metal nanostructures. The methods proposed in this work have been successfully used to detect the pesticide residues of thiram and showed good detection performance. The detection limits for 4-Mercaptobenzoic acid (4-MBA) and thiram were determined to be 10-9 and 10-8 M, the corresponding enhancement factor could be 1.64 × 105 and 6.38 × 104. Low concentration of thiram was detected in the peels of tomatoes and cucumbers, indicating its feasibility in actual sample detection. The combination of evanescent waves and SERS provides a new direction for the application of SERS sensors, which had great application potential in the field of pesticide residue detection.

7.
Nat Commun ; 14(1): 2928, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253769

RESUMO

Designing artificial viral vectors (AVVs) programmed with biomolecules that can enter human cells and carry out molecular repairs will have broad applications. Here, we describe an assembly-line approach to build AVVs by engineering the well-characterized structural components of bacteriophage T4. Starting with a 120 × 86 nm capsid shell that can accommodate 171-Kbp DNA and thousands of protein copies, various combinations of biomolecules, including DNAs, proteins, RNAs, and ribonucleoproteins, are externally and internally incorporated. The nanoparticles are then coated with cationic lipid to enable efficient entry into human cells. As proof of concept, we assemble a series of AVVs designed to deliver full-length dystrophin gene or perform various molecular operations to remodel human genome, including genome editing, gene recombination, gene replacement, gene expression, and gene silencing. These large capacity, customizable, multiplex, and all-in-one phage-based AVVs represent an additional category of nanomaterial that could potentially transform gene therapies and personalized medicine.


Assuntos
Bacteriófago T4 , Genoma Humano , Humanos , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Vetores Genéticos/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , DNA Viral/genética
8.
J Clin Immunol ; 43(4): 835-845, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807221

RESUMO

PURPOSE: Deficiency of adenosine deaminase 2 (DADA2), an autosomal recessive autoinflammatory disorder caused by biallelic loss-of-function variants in adenosine deaminase 2 (ADA2), has not been systemically investigated in Chinese population yet. We aim to further characterize DADA2 cases in China. METHODS: A retrospective analysis of patients with DADA2 identified through whole exome sequencing (WES) at seventeen rheumatology centers across China was conducted. Clinical characteristics, laboratory findings, genotype, and treatment response were analyzed. RESULTS: Thirty patients with DADA2 were enrolled between January 2015 and December 2021. Adenosine deaminase 2 enzymatic activity was low in all tested cases to confirm pathogenicity. Median age of disease presentation was 4.3 years and the median age at diagnosis was 7.8 years. All but one patient presented during childhood and two subjects died from complications of their disease. The patients most commonly presented with systemic inflammation (92.9%), vasculitis (86.7%), and hypogammaglobinemia (73.3%) while one patient presented with bone marrow failure (BMF) with variable cytopenia. Twenty-three (76.7%) patients were treated with TNF inhibitors (TNFi), while two (6.7%) underwent hematopoietic stem cell transplantation (HSCT). They all achieved clinical remission. A total of thirty-nine ADA2 causative variants were identified, six of which were novel. CONCLUSION: To establish early diagnosis and improve clinical outcomes, genetic screening and/or testing of ADA2 enzymatic activity should be performed in patients with suspected clinical features. TNFi is considered as first line treatment for those with vascular phenotypes. HSCT may be beneficial for those with hematological disease or in those who are refractory to TNFi.


Assuntos
Adenosina Desaminase , Peptídeos e Proteínas de Sinalização Intercelular , Humanos , Adenosina Desaminase/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Estudos de Coortes , Estudos Retrospectivos , Mutação
9.
J Antimicrob Chemother ; 78(3): 747-756, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36659862

RESUMO

OBJECTIVES: The genus Streptococcus contains species of important zoonotic pathogens such as those that cause bovine mastitis. Unfortunately, many Streptococcus species have developed antibiotic resistance. Phage lysins are considered promising alternatives to antibiotics because it is difficult for bacteria to develop lysin resistance. However, there remains a lack of phage lysin resources for the treatment of streptococci-induced mastitis. METHODS: We identified the prophage lysin Lys0859 from the genome of the Streptococcus suis SS0859 strain. Lys0859 was subsequently characterized to determine its host range, MIC, bactericidal activity in milk, and ability to clear biofilms in vitro. Finally, to determine the effects of Lys0859 on the treatment of both bovine mastitis and S. suis infection in vivo, we established models of Streptococcus agalactiae ATCC 13813-induced mastitis and S. suis serotype 2 SC19 systemic infection. RESULTS: Our results demonstrate that Lys0859 possesses broad-spectrum lytic activity against Streptococcus and Staphylococcus species isolated from animals with bovine mastitis and 15 serotypes of S. suis isolated from swine. Intramammary and intramuscular injection of Lys0859 reduced the number of bacteria in mammary tissue by 3.75 and 1.45 logs compared with the PBS group, respectively. Furthermore, 100 µg/mouse of Lys0859 administered intraperitoneally at 1 h post-infection protected 83.3% (5/6) of mice from a lethal dose of S. suis infection. CONCLUSIONS: Overall, our results enhance the understanding and development of new strategies to combat both streptococci-induced mastitis and S. suis infection.


Assuntos
Bacteriófagos , Mastite Bovina , Infecções Estreptocócicas , Fagos de Streptococcus , Streptococcus suis , Feminino , Bovinos , Animais , Suínos , Camundongos , Humanos , Prófagos/genética , Mastite Bovina/tratamento farmacológico , Antibacterianos/farmacologia , Infecções Estreptocócicas/microbiologia
10.
Chinese Journal of Neonatology ; (6): 471-477, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-990775

RESUMO

Objective:To study the role of myocardial work parameters in early identification of myocardial injury in neonatal asphyxia.Methods:From July 2020 to December 2021, neonates diagnosed with mild neonatal asphyxia admitted to the Department of Neonatology of our hospital within 24 h after birth were prospectively enrolled into the asphyxia group. Neonates without asphyxia during the same period were selected as the control group and matched with the asphyxia group for gender, gestational age and birth weight at a ratio of 1:1~1:2. The asphyxia group was subgrouped into preterm asphyxia group and term asphyxia group. All neonates received echocardiography within 24 h after birth. Multiple parameters were measured including M-mode, two-dimensional image, Doppler image, global longitudinal strain (GLS) and myocardial work parameters [global work index (GWI), global constructive work (GCW), global wasted work (GWW), global work efficiency (GWE)]. The level of serum N-terminal pro brain natriuretic peptide (NT-proBNP) was recorded in the asphyxia group. The data were compared between the asphyxia group and the control group. Correlations between myocardial work parameters and other parameters were analyzed.Results:A total of 33 cases were in the asphyxia group and 43 cases were in the control group. The preterm asphyxia group (18 cases) showed significantly lower GWI and GCW than the preterm control group (18 cases) [GWI: (702±153) mmHg vs. (879±205) mmHg, GCW: (1 016±221) mmHg vs. (1 200±271) mmHg] ( P<0.05). No differences existed in GLS, GWW and GWE. The term asphyxia group (15 cases) showed significantly lower GWW than the term control group (25 cases) [45.0 (30.0, 65.0) mmHg vs. 71.0 (35.5,85.5) mmHg] ( P<0.05). No differences existed in GLS, GWI, GCW and GWE. GWI was negatively correlated with serum NT-proBNP level ( r=-0.327, P<0.05). Conclusions:GWI and GCW may indicate myocardial injury in preterm neonates with mild asphyxia.

11.
Angew Chem Int Ed Engl ; 61(48): e202210755, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36205517

RESUMO

Although the synthesis of α-tertiary amino acids (ATAAs) has been extensively studied, the development of an inexpensive and facile methodology to incorporate multifunctionality on ATAAs remains challenging. In this article, we present a single-step radical approach for the modular synthesis of functionally diverse ATAAs. This synthesis takes place under mild conditions with an absence of metals, photocatalysts, and all other additives. We demonstrate the broad applications of this approach on a variety of aliphatic and aromatic carboxylic acids, alkenes, 1,3-enynes, and oxazolones. The results prove that our method provides excellent functional group tolerance and late-stage applicability, as well as gram-scale synthesis via flow chemistry. Additionally, we include mechanistic studies which reveal that the excited state of oxazolone enolate upon light excitation is a key intermediate that acts as a radical precursor and an efficient reductant.


Assuntos
Alcenos , Aminoácidos , Alcenos/química , Ácidos Carboxílicos , Metais
12.
Vet Immunol Immunopathol ; 252: 110483, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088788

RESUMO

Inflammation is an innate immune response of the body against pathogens and other irritants. The NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome is a major player in the inflammatory response against pathogenic microorganisms. In this study, we analyzed the relationship between the NLRP3 inflammasome and the influenza virus NS1 protein, which is involved in host immune escape. The canine influenza virus NS1 protein transcriptionally attenuated proinflammatory cytokines by inhibiting the nuclear factor-κB (NF-κB) activator. NS1 also directly interacted with NLRP3 and blocked ASC (Apoptosis-associated speck-like protein containing CARD) oligomerization, which deactivated the NLRP3 inflammasome. In addition, NS1 inhibited pro-caspase 1 cleavage into caspase-1, which prevents maturation of IL-1ß and IL-18 from their respective precursors, eventually reducing the inflammatory response. Taken together, the influenza NS1 protein evades host immunity, and our findings provide a theoretical basis for the prevention and treatment of canine influenza.


Assuntos
Doenças do Cão , Influenza Humana , Animais , Caspase 1 , Citocinas , Cães , Humanos , Inflamassomos , Vírus da Influenza A Subtipo H3N2/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , Irritantes , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas não Estruturais Virais
13.
Microbiol Spectr ; 10(5): e0291422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36165776

RESUMO

The rapid emergence of phage-resistant bacterial mutants is a major challenge for phage therapy. Phage cocktails have been considered one approach to mitigate this issue. However, the synergistic effect of randomly selected phages in the cocktails is ambiguous. Here, we rationally designed a phage cocktail consisting of four phages that utilize the lipopolysaccharide (LPS) O antigen, the LPS outer core, the LPS inner core, and the outer membrane proteins BtuB and TolC on the Salmonella enterica serovar Enteritidis cell surface as receptors. We demonstrated that the four-phage cocktail could significantly delay the emergence of phage-resistant bacterial mutants compared to the single phage. To investigate the fitness costs associated with phage resistance, we characterized a total of 80 bacterial mutants resistant to a single phage or the four-phage cocktail. We observed that mutants resistant to the four-phage cocktail were more sensitive to several antibiotics than the single-phage-resistant mutants. In addition, all mutants resistant to the four-phage cocktail had significantly reduced virulence compared to wild-type strains. Our mouse model of Salmonella Enteritidis infection also indicated that the four-phage cocktail exhibited an enhanced therapeutic effect. Together, our work demonstrates an efficient strategy to design phage cocktails by combining phages with different bacterial receptors, which can steer the evolution of phage-resistant strains toward clinically exploitable phenotypes. IMPORTANCE The selection pressure of phage promotes bacterial mutation, which results in a fitness cost. Such fitness trade-offs are related to the host receptor of the phage; therefore, we can utilize knowledge of bacterial receptors used by phages as a criterion for designing phage cocktails. Here, we evaluated the efficacy of a phage cocktail made up of phages that target four different receptors on Salmonella Enteritidis through in vivo and in vitro experiments. Importantly, we found that pressure from phage cocktails with different receptors can drive phage-resistant bacterial mutants to evolve in a direction that entails more severe fitness costs, resulting in reduced virulence and increased susceptibility to antibiotics. These findings suggest that phage cocktail therapy using combinations of phages targeting different important receptors (e.g., LPS or the efflux pump AcrAB-TolC) on the host surface can steer the host bacteria toward more detrimental surface mutations than single-phage therapy, resulting in more favorable therapeutic outcomes.


Assuntos
Bacteriófagos , Infecções por Salmonella , Camundongos , Animais , Salmonella enteritidis , Bacteriófagos/genética , Lipopolissacarídeos/metabolismo , Virulência , Antígenos O , Antibacterianos/farmacologia , Proteínas de Membrana
14.
Nat Microbiol ; 7(9): 1480-1489, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982312

RESUMO

First discovered in the 1980s, retrons are bacterial genetic elements consisting of a reverse transcriptase and a non-coding RNA (ncRNA). Retrons mediate antiphage defence in bacteria but their structure and defence mechanisms are unknown. Here, we investigate the Escherichia coli Ec86 retron and use cryo-electron microscopy to determine the structures of the Ec86 (3.1 Å) and cognate effector-bound Ec86 (2.5 Å) complexes. The Ec86 reverse transcriptase exhibits a characteristic right-hand-like fold consisting of finger, palm and thumb subdomains. Ec86 reverse transcriptase reverse-transcribes part of the ncRNA into satellite, multicopy single-stranded DNA (msDNA, a DNA-RNA hybrid) that we show wraps around the reverse transcriptase electropositive surface. In msDNA, both inverted repeats are present and the 3' sides of the DNA/RNA chains are close to the reverse transcriptase active site. The Ec86 effector adopts a two-lobe fold and directly binds reverse transcriptase and msDNA. These findings offer insights into the structure-function relationship of the retron-effector unit and provide a structural basis for the optimization of retron-based genome editing systems.


Assuntos
Escherichia coli , DNA Polimerase Dirigida por RNA , Sequência de Aminoácidos , Sequência de Bases , Microscopia Crioeletrônica , DNA , DNA Bacteriano , Conformação de Ácido Nucleico
15.
J Int Med Res ; 50(6): 3000605221105372, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35730330

RESUMO

OBJECTIVE: This study was performed to examine the relationship between the C-reactive protein/albumin ratio (CAR) and the prognosis of patients with lung adenocarcinoma and thus provide a reference for evaluating the prognosis of lung adenocarcinoma. METHODS: The clinical data of 130 patients with lung adenocarcinoma were retrospectively collected and analyzed. The patients' overall survival (OS) time was calculated, and the factors affecting OS were statistically analyzed. RESULTS: The CAR was correlated with sex, clinical stage, brain metastasis, S100 calcium-binding protein B (S100B), interleukin 17, myelin basic protein, squamous cell carcinoma antigen (SCC-Ag), and the lymphocyte count. The median OS was significantly shorter in the high- than low-CAR group (18 vs. 64 months, respectively). The CAR, clinical stage, brain metastasis, S100B, interleukin 17, SCC-Ag, C-reactive protein, albumin, and neutrophil count affected the OS of patients with lung adenocarcinoma. The CAR and clinical stage were independent risk factors for a poor prognosis in patients with lung adenocarcinoma. CONCLUSIONS: The CAR and clinical stage are independent risk factors for OS in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Albuminas/metabolismo , Proteína C-Reativa/metabolismo , Humanos , Interleucina-17 , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Prognóstico , Estudos Retrospectivos
16.
Infect Drug Resist ; 15: 2689-2702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655790

RESUMO

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen worldwide. Infections due to MRSA are associated with higher mortality rates compared with methicillin-susceptible S. aureus. Meanwhile, bacteriophages have been shown to overcome the emergence of MRSA. Methods: Phage PHB22a, PHB25a, PHB38a, and PHB40a were isolated. Here, we evaluated the ability of a phage cocktail containing phages PHB22a, PHB25a, PHB38a, and PHB40a against MRSA S-18 strain in vivo and in vitro. Phage whole-genome sequencing, host-range determination, lytic activity, and biofilm clearance experiments were performed in vitro. Galleria mellonella larvae and a mouse systemic infection model to evaluate the efficacy of phage therapy in vivo. Results: The phage cocktail exhibited enhanced antibacterial and anti-biofilm effects compared to the single phage. Phage cocktail contained with Ca2+/Zn2+ significantly reduced the number of viable bacteria (24-h or 48-h biofilm) by more than 0.81-log compared to the phage cocktail alone. Furthermore, we demonstrated that the addition of Ca2+ and Zn2+ phage cocktail could increase the survival rate of G. mellonella larvae infected with S. aureus by 10% compared with phage cocktail alone. This was further confirmed in the mouse model, which showed a 2.64-log reduction of host bacteria S-18, when Ca2+ and Zn2+ were included in the cocktail compared with the phage cocktail alone. Conclusion: Our results indicated that phage cocktail supplemented with Ca2+/Zn2+ could effectively remove bacteria in biofilms and mice tissues infected with S. aureus.

17.
Journal of Chinese Physician ; (12): 1785-1788, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-992232

RESUMO

Objective:To investigate the clinical value of Rotarex ? S in debulking the femoropopliteal calcified lesion. Methods:The data of 5 patients with femoropopliteal calcified lesions treated with Rotarex ? S combined with drug balloon treatment admitted to the First Affiliated Hospital of Dalian Medical University from March 2020 to December 2021 were retrospectively analyzed. The success rate and complications of all operations were recorded. CT software was used to compare the effective lumen area of the target lesion area before and after surgery in all cases, and the ischemic grade of the affected limb before and after surgery was recorded in all patients. Results:All 5 femoropopliteal calcified lesions were successfully treated with Rotarex ? S debulking followed with drug-coated balloon angioplasty without flow-limited dissections, vascular perforation and distal embolizations, with a success rate of 100%. The effective lumen area for calcified lesions were increased 9-15.11 mm 2 (median: 13 mm 2). The Rutherford classifications were improved from R 2-4 to R 1-2. Conclusions:Femoropopliteal calcified lesion debulking with Rotarex ? S was safe and effective.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-941030

RESUMO

OBJECTIVE@#To investigate the effect of Enterococcus faecium QH06 on TNBS-induced ulcerative colitis (UC) in rats and explore the mechanisms in light of intestinal flora and intestinal immunity.@*METHODS@#Thirty-six male Wistar rats were randomized equally into control group, UC model group, and E.faecium QH06 intervention group. The rats in the latter two groups were subjected to colonic enema with 5% TNBS/ethanol to induce UC, followed by treatment with intragastric administration of distilled water or E.faecium QH06 at the dose of 0.21 g/kg. After 14 days of treatment, the rats were examined for colon pathologies with HE staining. The mRNA and protein expression levels of IL-4, IL-10, IL-12, and IFN-γ in the colon tissues were detected using RT-qPCR and ELISA, and the expression of TLR2 protein was detected with immunohistochemistry and ELISA. Illumina Miseq platform was used for sequencing analysis of the intestinal flora of the rats with bioinformatics analysis. The correlations of the parameters of the intestinal flora with the expression levels of TLR2 and cytokines were analyzed.@*RESULTS@#The rats with TNBS- induced UC showed obvious weight loss (P < 0.01) and severe colon tissue injury with high pathological scores (P < 0.01). The protein expression levels of IFN-γ, IL-12, and TLR2 (P < 0.01) and the mRNA expression levels of IFN-γ, IL-12 and IL-10 (P < 0.05) were significantly increased in the colon tissues of the rats with UC. Illumina Miseq sequence analysis showed that in UC rats, the Shannon index (P < 0.05) ACE (P < 0.01)and Chao (P < 0.05) index for the diversity of intestinal flora both decreased with a significantly increased abundance of Enterobacteriaceae (P < 0.01) and a lowered abundance of Burkholderiaceae (P < 0.05). Compared with the UC rats, the rats treated with E. faecium QH06 showed obvious body weight gain (P < 0.05), lessened colon injuries, lowered pathological score of the colon tissue (P < 0.05), decreased protein expressions of IFN- γ, IL- 12, and TLR2 and mRNA expressions of IFN- γ and IL-12 (P < 0.01 or 0.05), and increased protein expressions of IL- 4 (P < 0.05). The Shannon index ACE (P < 0.05) and Chao (P < 0.05) index of intestinal microflora were significantly increased, the abundance of Enterobacteriaceae was lowered and that of Burkholderiaceae and Rikenellaceae was increased in E.faecium QH06- treated rats (P < 0.01 or 0.05). Correlation analysis showed that IFN-γ was positively correlated with the abundance of Enterobacteriaceae, and IFN-γ was negatively correlated with the abundance of Prevotellaceae, Desulfovibrionaceae, norank_o_Mollicutes_RF39 and Clostridiales_vadinBB60_group; TLR2 was negatively correlated with Clostridiales_vadinBB60_group, norank_o_Mollicutes_RF39 and Prevotellaceae.@*CONCLUSION@#E.faecium QH06 can alleviate TNBS-induced colonic mucosal injury in rats, and its effect is mediated possibly by increasing the abundance of SCFA-producing bacteria such as Prevotellaceae and inhibiting abnormal immune responses mediated by TLR2.


Assuntos
Animais , Masculino , Ratos , Colite Ulcerativa/tratamento farmacológico , Colo/metabolismo , Interleucina-10 , Interleucina-12/uso terapêutico , RNA Mensageiro/metabolismo , Ratos Wistar , Receptor 2 Toll-Like/metabolismo
19.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-928581

RESUMO

OBJECTIVES@#To evaluate myocardial injury in neonates born to pregnant women with pregnancy complicated by severe preeclampsia by myocardial work indices.@*METHODS@#A prospective cohort study was performed on 25 preterm infants born to the pregnant women with severe preeclampsia from June 2020 to April 2021 (severe preeclampsia group), and 25 preterm infants born to the pregnant women without severe complications in pregnancy were enrolled as the control group. Echocardiography was performed within 24 hours and at 48-72 hours and 14-28 days after birth to measure conventional parameters. Two-dimensional speckle-tracking echocardiography was performed to construct a noninvasive left ventricular pressure-strain loop based on two-dimensional myocardial strain and left ventricular systolic pressure noninvasively measured, so as to calculate myocardial work indices.@*RESULTS@#Compared with the control group, the severe preeclampsia group had significant reductions in left ventricular global work index and global constructive work within 24 hours after birth (P<0.05), a significant reduction in left ventricular global work efficiency and a significant increase in global waste work at 48-72 hours after birth (P<0.05), and a significant reduction in left ventricular global work efficiency at 14-28 days after birth (P<0.05).@*CONCLUSIONS@#Subclinical myocardial injury persists in the neonatal period in preterm infants born to pregnant women with severe preeclampsia.


Assuntos
Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Ecocardiografia/métodos , Recém-Nascido Prematuro , Pré-Eclâmpsia , Gestantes , Estudos Prospectivos
20.
Front Immunol ; 12: 745625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712234

RESUMO

Developing influenza vaccines that protect against a broad range of viruses is a global health priority. Several conserved viral proteins or domains have been identified as promising targets for such vaccine development. However, none of the targets is sufficiently immunogenic to elicit complete protection, and vaccine platforms that can enhance immunogenicity and deliver multiple antigens are desperately needed. Here, we report proof-of-concept studies for the development of next-generation influenza vaccines using the bacteriophage T4 virus-like particle (VLP) platform. Using the extracellular domain of influenza matrix protein 2 (M2e) as a readout, we demonstrate that up to ~1,281 M2e molecules can be assembled on a 120 x 86 nanometer phage capsid to generate M2e-T4 VLPs. These M2e-decorated nanoparticles, without any adjuvant, are highly immunogenic, stimulate robust humoral as well as cellular immune responses, and conferred complete protection against lethal influenza virus challenge. Potentially, additional conserved antigens could be incorporated into the M2e-T4 VLPs and mass-produced in E. coli in a short amount of time to deal with an emerging influenza pandemic.


Assuntos
Bacteriófago T4/imunologia , Proteínas do Capsídeo/imunologia , Vacinas contra Influenza , Desenvolvimento de Vacinas/métodos , Proteínas da Matriz Viral/imunologia , Proteínas Viroporinas/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/sangue , Líquido da Lavagem Broncoalveolar/imunologia , Proteínas do Capsídeo/genética , Feminino , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Fármacos por Nanopartículas , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Biblioteca de Peptídeos , Estudo de Prova de Conceito , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/genética , Proteínas Viroporinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...